
Hydrol. Earth Syst. Sci., 25, 2399–2417, 2021
https://doi.org/10.5194/hess-25-2399-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Global ecosystem-scale plant hydraulic traits retrieved using
model–data fusion
Yanlan Liu, Nataniel M. Holtzman, and Alexandra G. Konings
Department of Earth System Science, Stanford University, Stanford, CA 94305, USA

Correspondence: Yanlan Liu (liu.9367@osu.edu)

Received: 9 December 2020 – Discussion started: 16 December 2020
Revised: 22 March 2021 – Accepted: 31 March 2021 – Published: 10 May 2021

Abstract. Droughts are expected to become more frequent
and severe under climate change, increasing the need for ac-
curate predictions of plant drought response. This response
varies substantially, depending on plant properties that regu-
late water transport and storage within plants, i.e., plant hy-
draulic traits. It is, therefore, crucial to map plant hydraulic
traits at a large scale to better assess drought impacts. Im-
proved understanding of global variations in plant hydraulic
traits is also needed for parameterizing the latest generation
of land surface models, many of which explicitly simulate
plant hydraulic processes for the first time. Here, we use a
model–data fusion approach to evaluate the spatial pattern
of plant hydraulic traits across the globe. This approach in-
tegrates a plant hydraulic model with data sets derived from
microwave remote sensing that inform ecosystem-scale plant
water regulation. In particular, we use both surface soil mois-
ture and vegetation optical depth (VOD) derived from the
X-band Japan Aerospace Exploration Agency (JAXA) Ad-
vanced Microwave Scanning Radiometer for Earth Observ-
ing System (EOS; collectively AMSR-E). VOD is propor-
tional to vegetation water content and, therefore, closely re-
lated to leaf water potential. In addition, evapotranspiration
(ET) from the Atmosphere–Land Exchange Inverse (ALEXI)
model is also used as a constraint to derive plant hydraulic
traits. The derived traits are compared to independent data
sources based on ground measurements. Using the K-means
clustering method, we build six hydraulic functional types
(HFTs) with distinct trait combinations – mathematically
tractable alternatives to the common approach of assigning
plant hydraulic values based on plant functional types. Us-
ing traits averaged by HFTs rather than by plant functional
types (PFTs) improves VOD and ET estimation accuracies
in the majority of areas across the globe. The use of HFTs

and/or plant hydraulic traits derived from model–data fusion
in this study will contribute to improved parameterization of
plant hydraulics in large-scale models and the prediction of
ecosystem drought response.

1 Introduction

Water stress during drought restricts photosynthesis, thus
weakening the strength of the terrestrial carbon sink (Ma
et al., 2012; Wolf et al., 2016; Konings et al., 2017) and pos-
sibly causing plant mortality under severe conditions (Mc-
Dowell et al., 2016; Adams et al., 2017; Choat et al., 2018).
The plant response to water stress also directly controls re-
gional water resources and drought propagation by modulat-
ing water flux and energy partitioning between the land sur-
face and the atmosphere (Goulden and Bales, 2014; Manoli
et al., 2016; Anderegg et al., 2019). However, how plants reg-
ulate water, carbon, and energy fluxes and plant mortality
under drought could vary considerably depending on plant
properties, particularly plant hydraulic traits (Sack et al.,
2016; Hartmann et al., 2018; McDowell et al., 2019). Un-
derstanding this variation is therefore crucial for the accurate
prediction of ecosystem dynamics under changing climate.

Plant hydraulic traits at both stem (e.g., ψ50,x; the xylem
water potential under 50 % loss of xylem conductivity) and
stomatal (e.g, g1; the sensitivity parameter of stomatal con-
ductance to vapor pressure deficit) levels control plant water
uptake and the extent of stomatal closure under water stress
(Martin-StPaul et al., 2017; Feng et al., 2017; Meinzer et al.,
2017; Anderegg et al., 2017). Distinct hydraulic traits across
species and plant communities define hydraulic strategies,
which lead to different responses of leaf water potential and
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gas exchange during drought (Matheny et al., 2017; Barros
et al., 2019). Plant hydraulic traits play critical roles in pre-
dicting stomatal response to stress (Sperry et al., 2017; Liu
et al., 2020a), plant water storage (Huang et al., 2017), leaf
desiccation (Blackman et al., 2019), and drought-driven tree
mortality risk (Anderegg et al., 2016; Powell et al., 2017; Liu
et al., 2017; De Kauwe et al., 2020). As a result of their ef-
fect on the surface energy balance, plant hydraulic traits also
impact the magnitude of land–atmosphere feedbacks (An-
deregg et al., 2019). In dry tropical forests, leaf water po-
tential – which is directly influenced by hydraulic traits – has
also been shown to affect leaf phenology (Xu et al., 2016).
As a result, it has been increasingly recognized that plant hy-
draulic traits are important for mediating ecosystem drought
response and hydroclimatic feedbacks at regional to global
scales (Choat et al., 2012; Anderegg, 2015; Choat et al.,
2018; Hartmann et al., 2018).

Understanding how plant hydraulic traits modulate large-
scale drought responses requires mapping these traits. At
large scales, plant traits are often parameterized based on
plant functional types (PFTs), such as evergreen needle-
leaf forests, evergreen broadleaf forests, deciduous broadleaf
forests, mixed forests, shrublands, grasslands, and croplands.
However, plant hydraulic traits can vary as much across
PFTs as within them (Anderegg, 2015; Konings and Gentine,
2017). Finding alternative ways to scale up in situ measure-
ments using a bottom-up approach is challenging because
the spatial coverage of such measurements is often limited
and biased towards temperate regions. Furthermore, plant hy-
draulic traits are highly variable within species (Anderegg,
2015) and even between different components of a single
plant and across vertical gradients within individual trees
(Johnson et al., 2016). Alternatively, because microwave re-
mote sensing observations of vegetation optical depth (VOD)
are sensitive to leaf water potential (Momen et al., 2017;
Konings et al., 2019; Holtzman et al., 2021), they may carry
implicit information that can be used to disentangle plant hy-
draulic traits, without the need for explicit upscaling.

Konings and Gentine (2017) first derived plant hydraulic
trait variations at large scales by using VOD to calculate the
effective ecosystem-scale isohydricity. The isohydricity re-
flects the response of leaf water potential as soil water poten-
tial dries down (Tardieu and Simonneau, 1998). At a stand
scale, this plant physiological metric has been used to explain
photosynthesis variations (Roman et al., 2015) and drought
mortality risk (McDowell et al., 2008) across species. At
a global scale, remote-sensing-derived isohydricity patterns
have been used to explain photosynthesis sensitivity to va-
por pressure deficit and soil moisture in North American
grasslands (Konings et al., 2017) and the Amazon (Giardina
et al., 2018), to explore the interannual variability in isohy-
dricity (Wu et al., 2020) and to explain the relationship be-
tween drought resistance and resilience in gymnosperms (Li
et al., 2020). However, because isohydricity is an emergent
rather than intrinsic property, it is subject to change with en-

vironmental conditions (Hochberg et al., 2018; Novick et al.,
2019; Feng et al., 2019; Mrad et al., 2019). Furthermore,
isohydricity is influenced by both stomatal and xylem traits
(Martínez-Vilalta et al., 2014), which do not always co-vary
(Manzoni et al., 2013; Martínez-Vilalta et al., 2014; Bartlett
et al., 2016; Martínez-Vilalta and Garcia-Forner, 2017). Es-
timating intrinsic xylem and stomatal traits separately is,
therefore, necessary for better assessment of plant drought
response.

From a modeling perspective, as plant hydraulics has been
increasingly recognized as a central link connecting hydro-
climatic processes and ecosystem ecology (Sack et al., 2016;
McDowell et al., 2019), land surface and dynamic vegetation
models that explicitly incorporate plant hydraulics are be-
coming more common (e.g., Xu et al., 2016; Christoffersen
et al., 2016; Kennedy et al., 2019; De Kauwe et al., 2020;
Eller et al., 2020). However, explicit plant hydraulic repre-
sentation also requires parameterization choices for the asso-
ciated plant hydraulic traits. As discussed above, a bottom-
up scaling of in situ measurements is likely to miss signif-
icant fractions of the spatial variability in these parameters.
Alternatively, Liu et al. (2020a) took a top-down inversion
approach by integrating a plant hydraulic model with ET
data observed at FLUXNET sites. This model–data fusion
approach identifies the most likely traits generating modeled
dynamics consistent with observations, thus providing effec-
tive hydraulic traits that represent ecosystem-scale behav-
iors. Similar model–data fusion approaches have been pre-
viously applied in carbon cycle models (e.g. Wang et al.,
2009; Dietze et al., 2013; Quetin et al., 2020). Not surpris-
ingly, many of these applications suggest that integrating in-
formative observations is among the keys to effectively con-
straining model parameters.

Here, we use the model–data fusion approach to evaluate
the global pattern of ecosystem-scale plant hydraulic traits.
Specifically, we determined global maps of five plant hy-
draulic traits (see Sect. 2). To effectively constrain the traits,
we use several data sets derived from microwave remote
sensing observations, each of which is affected by plant hy-
draulic behavior. Specifically, we used VOD, surface soil
moisture, and ET estimates from a microwave implemen-
tation of the Atmosphere–Land Exchange Inverse (ALEXI)
framework. The resulting retrieved ecosystem-scale plant hy-
draulic traits are then compared to available in situ observa-
tions. Having derived spatial maps of variations in plant hy-
draulic traits, we explore whether simple alternatives to PFTs
can be built to facilitate parameterizing land surface mod-
els. We derive several so-called hydraulic functional types
(HFTs) based on the clustering of retrieved hydraulic traits
and examine their spatial patterns.
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2 Methods

2.1 Plant hydraulics model

For the model underlying the model–data fusion system,
we used a soil–plant system model adapted from Liu et al.
(2020a) that incorporates plant hydraulics. The soil is char-
acterized by two layers, i.e., a hydraulically active rooting
zone extending to the maximum rooting depth, topped by a
surface layer with a fixed depth of 5 cm. Soil moisture in both
layers is modeled based on the soil water balance, as follows:

Z1
ds1
dt
= P −L12−E (1)

Z2
ds2
dt
= L12−L23− J, (2)

where Z1 (= 5 cm) and Z2 are the thickness of the two soil
layers, and s1 and s2 are the volumetric soil moisture of the
two layers. P is the precipitation rate, E is the soil evapora-
tion rate, and J is plant water uptake. The L12 and L23 are
vertical fluxes between the two soil layers and out of the root-
ing zone, respectively. Both are calculated based on Darcy’s
law. A constant soil moisture below the rooting zone is as-
sumed as the boundary condition for the L23 calculation. The
soil evaporation rate E is calculated as the potential evapo-
ration from the Penman equation multiplied by a stress fac-
tor of s1/n, where n is the soil porosity. The potential evap-
oration is driven by the fraction of total net radiation that
penetrates through the canopy to the ground surface based
on Beer’s law (Campbell and Norman, 1998). The remain-
ing fraction of total net radiation is absorbed by the leaves
and drives transpiration (Eq. 7). Plant water uptake J is de-
termined as the product of the whole-plant conductance (gp)
and the water potential gradient between the soil (ψs) and the
leaf (ψl), as follows:

J = gp (ψs−ψl), (3)

where the soil water potential is calculated from s2 based on
the empirical soil water retention curve by Clapp and Horn-
berger (1978).

ψs = ψs,sat (s2/n)
−b0 . (4)

Above, ψs,sat is the saturated soil water potential, n is the
soil porosity, and b0 is the shape parameter. Plant water up-
take from the thin surface layer is assumed to be negligible.
The whole-plant conductance varies with leaf water poten-
tial, following a linear vulnerability curve as follows:

gp = gp,max

(
1−

ψl

2ψ50,x

)
, (5)

where gp,max is the maximum xylem conductance, and ψ50,x
is the water potential at which xylem conductance drops to
half of its maximum. A linear vulnerability curve is used be-
cause the nonlinearity of the vulnerability curve can hardly

be identified using the model–data fusion approach, even at a
much finer scale of a flux tower footprint (Liu et al., 2020a).
The linearized form here keeps the number of parameters
minimal.

The model assumes a single water storage pool in the
canopy. The size of this pool is recharged by plant water up-
take (J ) and reduced by transpiration (T ), with a vegetation
capacitance parameter C determining the proportionality be-
tween that water flux and the corresponding change in plant
water potential.

C
dψl

dt
= J − T (6)

Transpiration is computed using the Penman–Monteith equa-
tion.

T =
1Rnl+ ρa cp gaD

λ
[
1+ γ (1+ ga/gs)

] , (7)

where 1 is the rate of change of saturated vapor pressure
with air temperature, Rnl is the fraction of net radiation ab-
sorbed by the leaves, ρa is the air density, cp is the specific
heat capacity of air, ga is the aerodynamic conductance,D is
the vapor pressure deficit, λ is the latent heat of vaporization,
γ is the psychrometric constant, and gs is the stomatal con-
ductance to water vapor per unit ground area. The stomatal
conductance is calculated using the Medlyn stomatal conduc-
tance model (Medlyn et al., 2011), while omitting cuticular
and epidermal losses by assuming zero minimum stomatal
conductance.

gs = a0 LAI
(

1+
g1
√
D

)
A

ca
, (8)

where a0 = 1.6 is the relative diffusivity of water vapor with
respect to CO2, LAI is the leaf area index, and g1 is the
slope parameter, inversely proportional to the square root of
marginal water use efficiency (Medlyn et al., 2011; Lin et al.,
2015). A is the biochemical demand for CO2 calculated us-
ing the photosynthesis model (Farquhar et al., 1980), and ca
is the atmospheric CO2 concentration. Photosynthesis is lim-
ited by either ribulose-1, 5-bisphosphate (RuBP) regenera-
tion or by the carboxylation rate. Water stress is assumed
to restrict photosynthesis under the carboxylation-limited
regime through a down-regulated maximum carboxylation
rate (Vcmax), following Kennedy et al. (2019) and Fisher et al.
(2019).

Vcmax =

(
1−

ψl

2ψ50,s

)
Vcmax,w, (9)

where ψ50,s is the leaf water potential when Vcmax drops
to half of its maximum value under well-watered conditions
(Vcmax,w).

The model was driven by climate conditions at a 3 h scale.
To temporally integrate the model, a forward Euler method
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was used for computational efficiency, except for the calcu-
lation of plant water uptake, for which Eqs. (2) through (6)
were linearized at each time step and then solved analytically
to ensure numerical stability. The modeled time series of ET
(E+T ), surface soil moisture (s1), and VOD were compared
with the microwave remote sensing observations as described
below.

2.2 Microwave remote sensing constraints

To derive plant hydraulic traits, the model in Sect. 2.1 was
constrained by microwave remote sensing products of VOD
and surface soil moisture, as well as by remote-sensing-
derived ET, all with a spatial resolution of 0.25◦.

2.2.1 VOD

We used VOD and surface soil moisture derived from the
Japan Aerospace Exploration Agency (JAXA) Advanced Mi-
crowave Scanning Radiometer for Earth Observing System
(EOS; collectively AMSR-E) retrieved by the land param-
eter retrieval model (LPRM; Owe et al., 2008; Vrije Uni-
versiteit Amsterdam and NASA GSFC, 2016). This data set
is based on observations at X-band frequency (10.7 GHz),
which is primarily sensitive to the water content of the up-
per canopy layers (Frappart et al., 2020). Here, we used an
X-band record rather than lower microwave frequencies to
reduce errors associated with potential sensitivities of these
lower frequencies to xylem water potential, which might de-
viate from leaf water potential. Data for 2003–2011 were
used. Outliers that are more than three scaled median abso-
lute deviations away from the median were filtered out and
attributed to high-frequency noise in the retrievals common
to VOD data sets (Konings et al., 2015, 2016). A 5 d moving
average method was applied to midday and midnight VOD,
respectively, to further diminish noise in the raw data. Both
ascending (01:30 local time – LT) and descending (13:30 LT)
observations were used, to enable them to constrain subdaily
variations in plant hydraulic dynamics.

To relate VOD and leaf water potential, we noted that
VOD is proportional to vegetation water content (VWC).
In turn, VWC is determined by the product of aboveground
biomass (AGB) and plant relative water content (RWC).

VOD= βVWC= βAGB×RWC, (10)

where β is the scaling parameter depending on the structure
and dielectric properties of plants (Kirdiashev et al., 1979).
As in Momen et al. (2017), AGB is represented using lin-
earized relationships of LAI and ψl respectively. The rela-
tionship between RWC and ψl usually follows a Weibull
pressure–volume curve. However, it has been successfully
linearized in previous theoretical and observational applica-
tions (Manzoni et al., 2014; Momen et al., 2017; Konings and
Gentine, 2017). Thus, VOD is modeled as follows:

VOD= (a+ bLAI) (1+ cψl), (11)

where a and b are the scaling parameters from LAI to βAGB,
and c is the linearized slope of the pressure–volume curve.
The a, b, and c parameters vary across pixels and were
retrieved as additional inversion parameters as part of the
model–data fusion process.

2.2.2 Soil moisture

We also used the associated surface soil moisture retrievals
from the LPRM as additional constraints. Instead of perform-
ing a direct comparison between modeled and retrieved soil
moisture, we followed the widely used approach of assimi-
lating retrieved soil moisture only after matching its cumula-
tive distribution function (cdf) to the modeled soil moisture
(Reichle and Koster, 2004; Su et al., 2013; Parrens et al.,
2014). Because the magnitudes of both retrieved and mod-
eled soil moisture are highly dependent on the retrieval al-
gorithm and specific model structure (Koster et al., 2009),
this cdf-matching approach reduces the effect of bias in ei-
ther the model or observations on the ability of the soil mois-
ture observations to act as useful constraints. Unlike VOD,
surface soil moisture does not have a strong diurnal cycle.
Additionally, because the canopy and soil often reach ther-
mal equilibrium at night, AMSR-E retrievals at 13:30 have
greater retrieval errors than at 01:30 (Parinussa et al., 2016).
Therefore, only 01:30 surface soil moisture was included as
a model constraint here.

2.2.3 Evapotranspiration

The model was also constrained by weekly ET during
2003–2011. ET was estimated using the Atmosphere–Land
Exchange Inverse (ALEXI) algorithm (Anderson et al.,
1997, 2007; Holmes et al., 2018). Most remote-sensing-
based ET data sets assume prior values of stomatal parame-
ters (Kalma et al., 2008; Wang and Dickinson, 2012), which
would make it circular to retrieve plant traits based on these
data sets. By contrast, the ALEXI framework is relatively
independent of prior assumptions on vegetation properties.
To achieve this independence, ALEXI uses a two-source en-
ergy balance method and is constrained to be consistent with
the boundary layer evolution (Anderson et al., 2007; Holmes
et al., 2018). We further used a version of ALEXI based on
microwave-derived land surface temperatures rather than op-
tical ones as in the classic ALEXI implementations. When
compared to in situ observations, microwave–ALEXI and
optical–ALEXI performed similarly (Holmes et al., 2018),
but the microwave-based version has the advantage of hav-
ing more observations because, unlike optically derived esti-
mates, it is not limited by cloud cover. The 0.25◦ resolution of
the microwave–ALEXI product is also more consistent with
the other components of our model–data fusion system.
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2.3 Model–data fusion

Plant hydraulic traits and several other model parameters
controlling plant hydraulic behavior were retrieved using a
Markov chain Monte Carlo (MCMC) method, which deter-
mined the parameter values that yield model output most
consistent with observed constraints. A total of 13 parame-
ters were retrieved, including five plant hydraulic traits (g1,
ψ50,s, C, gp,max, andψ50,x), three scaling parameters relating
VOD toψl (a, b, and c in Eq. 11), two soil properties (includ-
ing b0 in Eq. 4 and the subsurface boundary condition of soil
moisture in the deepest layer), and three uncertainty values,
describing the standard deviation of the observational noise
of VOD (σVOD), surface soil moisture (σSM), and ET (σET),
respectively. An adaptive metropolized independence sam-
pler was used to generate posterior samples (Ji and Schmi-
dler, 2013). This sampling method was designed to facilitate
convergence especially for nonlinear models and has been
shown to be effective for retrieving plant hydraulic traits at
flux tower sites (Liu et al., 2020a). To reduce the dimension-
ality of the parameter space and facilitate convergence, the
MCMC jointly sampled all parameters, except the three scal-
ing parameters of VOD. For these parameters, the optimal
values were determined conditional on the rest of the param-
eters after each sampling step based on least squared error.
That is, after each sampling step, the three values were opti-
mized so as to minimize the least-squares difference between
observed VOD and the predicted VOD conditional on simu-
lated ψl and the optimized parameter values for a, b, and c.

The MCMC also incorporated prior information about pa-
rameter ranges and constraints on their realistic combina-
tions. Forψ50,x, a generalized extreme value distribution was
used as the prior for the corresponding PFT. The distribution
was fitted using measurements of species belonging to each
PFT in the TRY database (Kattge et al., 2011). The corre-
sponding PFT of each species was determined based on the
PLANTS database (USDA, NRCS, 2020) and the Encyclo-
pedia of Life (Parr et al., 2014). For PFTs not included in
the TRY database, a distribution fitted using measurements
for all species was used as the prior (Fig. S1). We also incor-
porated a physiological constraint from meta-analysis sug-
gesting stomatal conductance is downregulated before sub-
stantial xylem embolism occurs (Martin-StPaul et al., 2017;
Anderegg et al., 2017), as follows:

|ψ50,s |< |ψ50,x|. (12)

The physiological constraint, which was also used in Liu
et al. (2020a), avoids unrealistic combinations of parame-
ters that nevertheless match the data. For other parameters,
uniform noninformative priors spanning realistic ranges were
used (Table S1).

The cost function in the MCMC (i.e., the reverse of the
likelihood function multiplied by the prior) determines the
estimated posterior distribution of parameters. The likeli-
hood function was calculated by comparing the modeled

VOD, surface soil moisture, and ET with the three categories
of observations. Observations on rainy (daily cumulative pre-
cipitation > 1 cm) or freezing (daily minimum air tempera-
ture < 0 ◦C) days were removed. Each of the remaining ob-
servations was considered independent, following a Gaus-
sian distribution with a mean of the modeled value and the
standard deviation of the corresponding category (i.e., one of
σVOD, σSM, and σET). The likelihood of all observations were
then combined after reweighting each constraint based on its
number of observations. That is, in the following:

log(L(y(1:nv)
v ,y(1:ne)

e ,y(1:ns)
s |θ)

=

(
1
nv

nv∑
i=0

logL(y(i)v |θ)+
1
ne

ne∑
i=0

logL
(
y(i)e |θ

)
+

1
ns

ns∑
i=0

logL(y(i)s |θ)

)
nv+ ne+ ns

3
, (13)

where L is likelihood of observed VOD (yv), ET (ye), and
surface soil moisture (ys) under given parameters θ (includ-
ing all the 13 parameters to be retrieved). nv, ne, and ns
are the number of valid data of VOD, ET and surface soil
moisture, respectively. Due to the unbalanced number of ob-
servations among the measurement types, renormalizing the
weights in each category based on its number of observa-
tions avoids overweighting of semidaily VOD and surface
soil moisture over weekly ET observations.

For the global retrievals, pixels classified by MODIS land
cover data as wetland, urban area, barren area, snow/ice cov-
ered, or tundra dominated were excluded from the analysis.
Pixels for which VOD is below 0.15 or above 0.8 were also
excluded to remove sparsely vegetated pixels and extremely
dense vegetation areas, respectively. The most densely vege-
tated areas were removed because low microwave transmis-
sivity significantly reduces the accuracy of VOD and soil
moisture retrievals there (Kumar et al., 2020), and low VOD
pixels were removed to reduce inaccuracies due to ground
volume scattering and low vegetation density. For the re-
maining pixels, parameters were retrieved using observa-
tions in 2004 and 2005, during which the El Niño event
and the elevated tropical North Atlantic sea surface tem-
peratures induced drought stress in many regions across the
globe (Phillips et al., 2009; FAO, 2014). Here, we used only
2 years of observations, rather than the entire period, to re-
duce the computational load of model–data fusion. The re-
maining 7 years were used for testing. Separating retrieval
and testing periods also helped to (potentially) identify over-
fitting.

For each pixel, four MCMC chains were used. Each started
randomly within the prior parameter ranges, and each gener-
ated 50 000 samples. Within- and among-chain convergences
were diagnosed by Gelman–Rubin (< 1.2) and Geweke val-
ues (< 0.2; Brooks and Gelman, 1998). Across the studied
pixels, all parameters converged for 79 % of pixels, while
at least half of the parameters converged for 97 % of pix-
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els. The remaining 3 % of pixels that did not converge were
removed from the analysis. For each pixel, 200 samples were
randomly selected from the chains after step 40 000 as pos-
terior samples of parameters. Ensemble means of VOD, sur-
face soil moisture, and ET modeled using posterior samples
were compared to observations during the period 2003–2011.
Posterior means of the hydraulic traits in each pixel were
used for analysis below.

2.4 Climate forcing and ancillary properties

The model–data fusion system was run at 0.25◦ resolution.
Meteorological drivers at this spatial resolution and the 3 h
temporal resolution used by the model were derived from
the Global Land Data Assimilation System (GLDAS; Rodell
et al., 2004; Beaudoing and Rodell, 2020). In particular,
GLDAS-derived forcings include net shortwave radiation,
air temperature, precipitation, surface atmospheric pressure,
specific humidity, and aerodynamic conductance calculated
using the ratio between the sensible heat net flux and the dif-
ference between air and surface skin temperatures. LAI data
from the MODIS (Moderate Resolution Imaging Spectrora-
diometer) product MCD15A3H v006 (Myneni et al., 2015),
with a 500 m resolution, were aggregated to a 0.25◦ scale, us-
ing a Google Earth Engine, to be consistent with the GLDAS
climatic drivers. Missing data were linearly interpolated, and
a Savitzky–Golay filter (Savitzky and Golay, 1964) was ap-
plied to diminish high-frequency noise in the LAI time series.
To estimate Vcmax,w, a PFT map from the GLDAS land cover
map derived from MODIS was used (Fig. S2). The Vcmax,w
of each PFT was set as the static PFT-average from Walker
et al. (2017) and corrected by temperature, following Med-
lyn et al. (2002). The maximum rooting depth was obtained
from a global map synthesized from in situ observations (Fan
et al., 2017). Soil texture from the Harmonized World Soil
Database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) was used
to calculate soil drainage parameters based on empirical re-
lations (Clapp and Hornberger, 1978).

2.5 Analyses

2.5.1 Observing system simulation experiment

To test the capability of the model–data fusion approach to
correctly retrieve parameters under the presence of observa-
tional noise, we conducted an observing system simulation
experiment (OSSE) for 50 pixels. The 50 pixels were ran-
domly distributed across the globe. The OSSE uses synthetic
rather than real observations to test data assimilation uncer-
tainty, among other objectives (Arnold and Dey, 1986; Near-
ing et al., 2012; Errico et al., 2013). At each pixel, the time
series of VOD, surface soil moisture, and ET were generated
by using the model (Sect. 2.1) with prescribed parameters.
To mimic the presence of observational noise in real observa-
tional estimates, white noise was then added to the simulated

values of VOD, surface soil moisture, and ET. The prescribed
standard deviations of noise in VOD, surface soil moisture„
and ET, i.e., 0.05, 0.08, and 0.5 mm d−1, respectively, were
chosen to be within the mid-50 % ranges retrieved using real
data. The parameters retrieved using the model–data fusion
approach were then compared with the prescribed values.

2.5.2 Comparison between derived traits and in situ
measurements

Because hydraulic traits are often measured at a single plant
or a segment scale that is much smaller than the ecosystem
scale used in model–data fusion, and because of the rela-
tively coarse spatial resolution of the remote sensing data
used as constraints here, a one-to-one comparison between
in situ data and model–data-fusion-derived values is likely to
be dominated by representativeness error. Instead, we aggre-
gated both in situ measurements and the traits derived here
by PFTs to evaluate whether across-PFT patterns can be cap-
tured. Among the most ecologically important and widely
measured traits are g1 and ψ50,x, which indicate stomatal
marginal water use efficiency and vulnerability to xylem cav-
itation, respectively. Synthesized data sets of g1 from Lin
et al. (2015) and ψ50,x from Kattge et al. (2011), based on
in situ measurements covering a variety of species and cli-
mate types, were used for comparison. In addition, Trugman
et al. (2020) derived a map of tree ψ50,x across the con-
tinental United States at a 1◦ resolution, which integrated
measurements in the Xylem Functional Traits Database and
the US Forest Service Forest Inventory and Analysis (FIA)
long-term permanent plot network. This map was used for
a pixel-wise comparison with the ψ50,x retrieved here in US
areas dominated by forests. To perform this comparison, our
model–data-fusion-derived traits were first aggregated from
0.25◦ to the 1◦ resolution of the estimates by Trugman et al.
(2020).

2.5.3 Clustering analysis

To understand the global pattern of retrieved plant hydraulic
traits, we constructed hydraulic functional types (HFTs) us-
ing the K-means clustering method (MacQueen, 1967). This
method classifies each pixel to the nearest mean, i.e., the
cluster center in the five-dimensional space spanned by the
modeled hydraulic traits. To find the optimal number of clus-
ters, we calculated the ratio between the variance within clus-
ter traits across three to 20 clusters. The elbow method was
used to derive the optimal number of clusters (Kodinariya
and Makwana, 2013). That is, the optimal number of clus-
ters was chosen based on the inflection point (elbow) of the
curve relating the above ratio and the number of clusters.
The global pattern of these HFTs were examined. To pro-
vide insight into whether HFTs could be used as an alter-
native to PFTs, we evaluated how much the accuracy of es-
timated VOD and ET would degrade if VOD and ET were
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modeled using hydraulic traits based on an HFT-based clus-
tering rather than a more typical PFT-based clustering. That
is, we calculated the simulated VOD and ET by assigning hy-
draulic traits as the center values for the HFT present at each
pixel, rather than by using the average derived value across
each PFT as the PFT-wide value. Several factors differ be-
tween this calculation and the potential reduced error from
using HFTs in land surface models. For example, land sur-
face models often use subgrid-scale tiling systems that are
more complex than the pixel-scale calculations performed
here. The calculation here also did not account for uncertain-
ties in determining the optimal PFT-wide or HFT-wide values
or, indeed, the mapping of PFTs or HFTs to begin with (Poul-
ter et al., 2011; Hartley et al., 2017). Nevertheless, this analy-
sis provides first-order insight into the capacity of HFT-based
parameterization to improve over a PFT-based approach.

3 Results

3.1 Parameter retrieval in the OSSE

Across the 50 pixels tested in the OSSE, the prescribed traits
can be recovered using model–data fusion, with high Pear-
son correlations between the assumed and retrieved values
(Fig. 1). The hydraulic traits of g1, ψ50,x, and gp,max, along
with the soil parameters (b0 in Eq. 4 and the boundary condi-
tion bc), are accurately recovered (r ≥ 0.77). The C and the
ratio between ψ50,s and ψ50,x showed larger discrepancies
and greater uncertainty ranges due to the presence of (sim-
ulated) observational noise. For all parameters, the residual
errors are randomly distributed rather than scaling the true
parameter value. Overall, the OSSE supports the effective-
ness of the model–data fusion approach.

3.2 Accuracy of modeled VOD, ET, and surface soil
moisture

Over the entire study period of 2003–2011, the coefficient
of determination (R2) between estimated and observed VOD
has a median of 0.38 and a mid-50 % range of (0.22,0.55)
across the globe (Fig. 2a). The estimated VOD is highly cor-
related with observations in northern and southwestern Aus-
tralia, northeastern China, India, central Europe, Africa, and
eastern South America. The high VOD accuracy in these
areas is likely partially a result of the large contribution
of biomass to VOD due to strong biomass seasonality in
these areas (Liu et al., 2011; Momen et al., 2017). Notably,
however, even in areas where VOD has been shown to be
less correlated with LAI, including central Australia, central
Asia, southern Africa, and the western US (Momen et al.,
2017), the estimated VOD accounting for the signature of
leaf water potential is also able to capture observed VOD.
The model also accurately estimates observed ET with a me-
dian R2 of 0.60 and a mid-50 % range of (0.36,0.78; Fig. 2b).
Unlike in the majority of the world, the R2 of ET is rel-

atively lower in central Australia, southern South America,
and the southwestern US, where highly heterogeneous vege-
tation cover such as savannas and coexisting grass and shrubs
within a pixel could undermine model accuracy. The median
and mid-50 % range of surface soil moisture R2 is 0.22 and
(0.08,0.42), respectively. Modeled surface soil moisture is
less accurate in croplands (likely due to irrigation) and in
boreal regions, eastern China, Europe, and the mid-western
and eastern US. These regions largely overlap with those
where the observed soil moisture from AMSR-E is weakly
correlated with the reanalysis product of ERA-Interim that
integrates ground observations (Parinussa et al., 2015), sug-
gesting greater uncertainties of surface soil moisture from
AMSR-E compared to other regions. The overall accuracy
of estimated VOD, ET, and surface soil moisture both within
(Fig. S3) and outside (Fig. 2) the training period 2004–2005
suggest that the model and the derived traits effectively rep-
resent plant hydraulic dynamics.

3.3 Global pattern of plant hydraulic traits

The retrieved stomatal conductance slope parameter g1,
which is inversely proportional to marginal water use effi-
ciency (Eq. 6), exhibits clear spatial patterns (Fig. 3a). High
g1 values arise in areas covered by grasses and savannas,
such as the western US, the Sahel, central Asia, northern
Mongolia, and inner Australia. This pattern is consistent with
predictions from experimental data and optimality theory
that herbaceous species – given the low cost of stem wood
construction per unit water transport – should have the largest
g1, i.e., be the least water-use efficient (Manzoni et al., 2011;
Lin et al., 2015). In addition, croplands in India and east-
ern China also show high g1, consistent with the high isohy-
dricity of these regions (Konings and Gentine, 2017). Con-
sistent with ground measurements that suggest g1 increases
with biome average temperature (Lin et al., 2015), the g1 de-
rived here is also (on average) lower in boreal ecosystems
than in temperate and tropical ecosystems.

Highly negativeψ50,x values are found in boreal evergreen
needleleaf forests and in arid or seasonally dry biomes cov-
ered by forests, shrubs or savannas, such as the western US,
central America, eastern south America, southeastern Africa,
and Australia (Fig. 3b). However, ψ50,x is more spatially
scattered than g1. This could partially arise from the greater
coefficient of variation across ensembles of ψ50,x (Fig. 4),
suggesting ψ50,x is less tightly constrained compared to g1
(consistent with site-scale model–data fusion efforts in Liu
et al. (2020a) and the uncertainty estimates in the OSSE;
Fig. 1). This additional uncertainty might translate to more
noise in the ensemble medians for ψ50,x than that for g1.
Maps of other hydraulic traits are shown in Fig. S4. The
patterns of hydraulic traits exhibit greater variability beyond
PFT distribution (Fig. S2) and only limited correlation with
soil and climate conditions (Fig. S5).
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Figure 1. Comparison between the prescribed and retrieved plant hydraulic traits (g1, ψ50,s/ψ50,x, ψ50,x, gp,max, and C) and soil properties
(b0 and bc) in the observing system simulation experiment. The black dots and gray lines represent the mean and range of 1 standard deviation
of the retrieved posterior distributions. The diagonal dashed line is the 1 : 1 line. Pearson correlation coefficient (r) between the prescribed
and retrieved parameters is noted.

Among the plant hydraulic traits, we found strong coor-
dination between the vulnerability of stomata and the xylem
(ψ50,s and ψ50,x) across space (Fig. S5), consistent with ex-
isting evidence from ground measurements (Anderegg et al.,
2017). Other hydraulic traits are only weakly correlated, in-
cluding gp,max and ψ50,x (Fig. S5), which is consistent with
the previous finding suggesting the safety–efficiency trade-
off of xylem traits is weak across > 400 species (Gleason
et al., 2016).

Across PFTs, evergreen needleleaf forests have the low-
est g1, followed by deciduous broadleaf forests and shrub-
lands (Fig. 5a). Grasslands and croplands have the highest
g1. This trend follows the across-PFT pattern found by Lin
et al. (2015). The estimated across-PFT pattern of meanψ50,x
is also consistent with measurements included in the TRY
database (Kattge et al., 2011), i.e., lowest in grasslands and
highest in evergreen needleleaf forests (Fig. 5b). However,
across the globe, we found that the average standard devi-
ation within PFTs is 3.6 and 2.3 times the standard devia-
tion across PFTs for g1 and ψ50,x, respectively. The large
within-PFT variation is consistent with in situ observations
(Anderegg, 2015), indicating that PFTs are not informative
of plant hydraulic traits.

We further compared the retrieved ψ50,x for specific loca-
tions to an alternative estimate upscaled from Forest Inven-
tory and Analysis (FIA) surveys (Fig. 6). Consistent with the
FIA-based estimate, the retrieved ψ50,x are overall lower in
pixels dominated by evergreen needleleaf forests than in ev-
ergreen and deciduous broadleaf forests and mixed forests.
However, across pixels, the ecosystem-scale ψ50,x derived
from remote sensing vary significantly more than the esti-
mates from the Trugman et al. (2020) data set. Some fraction
of this discrepancy might be due to intra-species variability
in ψ50,x, which is not accounted for in the FIA-based esti-

mate, and due to the uncertainty in the kriging-based inter-
polation used for upscaling from the sparse FIA plots to each
1◦ pixel. Nevertheless, this discrepancy highlights the scale
gap between traits measured for a single plant and those de-
rived for an ecosystem.

3.4 Hydraulic functional types (HFTs)

We built six HFTs (termed H1 to H6) using the K-means
clustering method. The number of clusters (six) was chosen,
using the elbow method, based on the inflection point of the
ratio of within- to across-cluster variance (Fig. S6). Across
the six HFTs, the across-cluster variance is 1.7 times as large
as the within-cluster variance. The HFTs explain 57 % of the
total variance in hydraulic traits across the globe. The cluster
centers of the six HFTs are characterized by distinct com-
binations of hydraulic traits (Fig. 7a). Specifically, H1 and
H2 feature low ψ50,s and ψ50,x and are mainly distributed
in boreal forest and arid or seasonally dry biomes, includ-
ing the western US, central America, southeastern Africa,
central Asia, and Australia (Fig. 7b). H3 and H4 are char-
acterized by low and high vegetation capacitance (C), re-
spectively, though both have low gp,max. H3 is mainly but
not exclusively distributed in grasslands and savannas in the
central US, the Nordeste region in Brazil, eastern and south-
ern Africa, and eastern Australia, as well as in the Miombo
woodlands. H4 is distributed in shrublands in the southwest-
ern US, Argentina, southern Africa, northwestern India, and
northeastern Australia. H5, often found in tropical and sub-
tropical regions, is characterized by large gp,max and capac-
itance. H6 is characterized primarily by high g1, which in-
cludes croplands in India, southeastern Asia, and central and
eastern China. Note that the pattern of HFTs (Fig. 7b) is sub-
stantially distinct from the distribution of PFTs (Fig. S2), il-

Hydrol. Earth Syst. Sci., 25, 2399–2417, 2021 https://doi.org/10.5194/hess-25-2399-2021



Y. Liu et al.: Global pattern of plant hydraulic traits 2407

Figure 2. Assimilation accuracy (R2) of (a) VOD, (b) ET, and (c) soil moisture during the entire study period (2003–2011). Insets show the
probability distribution (pdf) of R2 across the entire study area. The gray shaded area is not included in analysis.

lustrating the limitations of parameterizing plant hydraulics
based on PFTs.

Using averaged traits per PFT, instead of pixel-specific
traits to calculate VOD and ET, led to a median increase
in normalized root mean square error (nRMSE, with the
long-term average used for normalization) of 0.82 and 0.58,
respectively. This degradation of accuracy is unsurprising
given the high spatial variability in hydraulic traits and the
fact that PFTs are not categorized specifically to distinguish
plant hydraulic functions. However, using the hydraulic traits
averaged per HFT instead improves prediction accuracy over
the PFT-based predictions. When compared to using pixel-
specific values, using average traits based on HFTs increases
the nRMSE by 0.65 and 0.42 for VOD and ET, respectively.
In each case, this is less than the degradation when PFT-
based averages are used. Indeed, when PFT-based instead
of HFT-based model estimates are compared, the nRMSE

of ET increases by more than 0.1 in 58 % of the analyzed
area (Fig. 8a). ET is mainly improved in arid or season-
ally dry biomes, including the western US, southern South
America, southern and eastern Africa, central Asia, and Aus-
tralia. In addition, the nRMSE of VOD is also improved
by more than 0.5 in 37 % of the analyzed area using HFTs
rather than PFTs (Fig. 8b). Areas exhibiting reduced error
are mainly located in the southwestern US, central Amer-
ica, eastern South America, the Mediterranean, Africa, and
Australia, where variation in leaf water potential has a strong
signature on VOD (Momen et al., 2017). These findings sug-
gest the importance of the appropriate parameterization of
hydraulic traits on capturing leaf water potential and ET vari-
ations at an ecosystem scale.
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Figure 3. Global maps of (a) g1 and (b) ψ50,x retrieved using model–data fusion. The posterior mean of each pixel is plotted.

Figure 4. Empirical distribution across pixels of the coefficient of
variation (CV) of g1 and ψ50,x calculated across ensembles.

4 Discussion

4.1 Contribution of VOD to informing plant hydraulic
behavior

The fact that VOD varies with plant water content allows the
investigation of plant physiological dynamics at large scales.
Although VOD has often been used as a proxy of above-
ground biomass (e.g., Liu et al., 2015; Tian et al., 2017;
Brandt et al., 2018; Teubner et al., 2019), it is in fact deter-
mined by both biomass and plant water status (Konings et al.,
2019). VOD variations within a day (Konings and Gentine,
2017; Li et al., 2017; Anderegg et al., 2018) and during soil

drydowns (Feldman et al., 2018; Zhang et al., 2019; Feld-
man et al., 2020) highlight the sensitivity of VOD to rela-
tive water content. At seasonal and interannual scales, VOD
has also been found to be modulated by leaf water poten-
tial or relative water content, thus deviating from biomass
signals (Momen et al., 2017; Tian et al., 2018; Tong et al.,
2019). Here, after parsing out the impact of biomass through
LAI, VOD provides information about leaf water potential
variation and, therefore, contributes to constraining the un-
derlying hydraulic traits. Kumar et al. (2020) previously as-
similated VOD into a land surface model as a constraint on
biomass, which led to improvements in modeled ET. Our
findings suggest that, when assimilated into models with an
explicit representation of plant hydraulics, VOD can act to
constrain both water and carbon dynamics and their respec-
tive climatic responses. Although not explored in detail in
this study, note also that, by determining optimal values for
a, b, and c (the parameters relating VOD to ψl in Eq. 11),
the model–data fusion system introduced here also allows the
determination of ψl from VOD, which may be of interest for
a variety of studies of plant responses to drought. However,
additional research is needed to understand the effect of the
choice of retrieval algorithm and specific VOD product (Li
et al., 2021) on any inferred VOD–ψl relationships. For this
reason, any such efforts would also benefit from explicit un-
certainty quantification.
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Figure 5. Retrieved (a) g1 and (b) ψ50,x using model–data fusion
(light colored bars), grouped by PFTs, in comparison with values
derived from in situ measurements (dark colored bars) reported in
Lin et al. (2015) and the TRY database (Kattge et al., 2011). Com-
pared PFTs include evergreen needleleaf forest (ENF), deciduous
broadleaf forest (DBF), evergreen broadleaf forest (EBF), shrub-
land (SHB), grassland (GRA), and cropland (CRO). Bars represent
medians of each PFT, and black lines indicate the 25th–75th per-
centile ranges. The g1 averaged across gymnosperm trees and an-
giosperm trees from Lin et al. (2015) were compared to retrieved g1
in pixels dominated by ENF and DBF, respectively.

Figure 6. Aggregated ψ50,x from upscaling the Forest Inventory
and Analysis (FIA) plots, based on Trugman et al. (2020), andψ50,x
retrieved here for corresponding pixels. The point size is scaled by
number of plots used in aggregation for each pixel.

Our previous study (Liu et al., 2020a) at the stand scale
has shown that stomatal traits are well constrained using ET
alone, whereas xylem traits, including ψ50,x, remain largely
under-constrained, in part due to lack of information on leaf
water potential. Incorporating VOD among the constraints
here contributes to the separation of xylem and stomatal be-
havior. As a result, the model–data fusion approach here is,
to our knowledge, the first to be able to retrieve both stomatal
and xylem traits across the globe. Nevertheless, ψ50,x is still
less well resolved across ensembles compared to other traits

(Fig. 4). This could result from trade-offs among hydraulic
traits and the lack of constraints on the scaling from leaf wa-
ter potential to VOD, which varies across space. More prior
information about these two factors will likely contribute
to improved retrieval of plant hydraulic traits. Additionally,
the use of solar-induced fluorescence or other constraints on
photosynthesis may allow for independent information about
stomatal closure that could be used to improve the accuracy
and certainty of the retrieved hydraulic traits. However, care
should be taken that the uncertainty introduced by coupling
to a photosynthesis model does not outweigh the added ad-
vantage of this additional constraint.

4.2 Bridging the spatial scale gap of hydraulic traits

Plant hydraulic traits vary among segments from root to
shoot even for a single tree, causing the hydraulic sensi-
tivity at a whole-tree scale to be distinct from that mea-
sured at a segment scale (Johnson et al., 2016). Similarly,
species diversity, canopy structure, and demographic com-
position can cause large variability in hydraulic traits. As a
result, a community-weighted average of a trait may not well
represent the integrated hydraulic behavior at an ecosystem
scale, as evidenced, for example, by the significant effect of
plant hydraulic diversity on evapotranspiration responses to
drought (Anderegg et al., 2018). Here, we also found a sub-
stantial discrepancy between community-weighted ψ50,x and
the ecosystem-scaled value derived from representing the
property of the entire pixel, even in the most extensively sur-
veyed pixels available (biggest dots in Fig. 6). This highlights
the challenge of scaling up ground measurements of plant
hydraulic traits to a scale relevant to land surface modeling
from the bottom up. The model–data fusion used here pro-
vides an approach to help address this challenge. However,
further study is needed to explore how stand and ecosystem
characteristics shape the ecosystem-scale hydraulic traits, as
well as the effective relationship between leaf water potential
and remote-sensing-scale water content.

4.3 Implications for land surface models

Because they are able to predict ET and VOD better than
PFTs (Fig. 8), the HFTs point to the potential for a better
parameterization scheme of plant hydraulics in land surface
models. Because HFTs require fewer clusters than PFTs do
to model ET with the same or better accuracy, parameterizing
plant hydraulics by HFTs in land surface models may con-
tribute to higher model accuracy. However, because the mag-
nitude of state variables may differ between models, even
as their temporal dynamics do not (Koster et al., 2009), in-
cluding between a given land surface model and the model
used here, using the exact values derived here may cause
errors. Instead, the map of HFTs and their relative magni-
tude of traits can be used as a baseline for model-specific
calibration. Moreover, moving beyond fixed values for each
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Figure 7. (a) Plant hydraulic traits of the centers of six hydraulic functional types and (b) their spatial pattern. Each trait of cluster centers is
normalized using (V −V5)/(V95−V5), where V is the trait magnitude, and V5 and V95 are the 5th and 95th percentiles of the corresponding
trait across the study area.

Figure 8. Normalized root mean square error (nRMSE) of estimated (a) ET and (b) VOD, using traits averaged by plant PFTs minus those
using traits averaged by HFTs. The insets show the areal frequency of the nRMSE difference.
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HFT, hydraulic traits within each type may be further related
to landscape features such as climate, topography, canopy
height, and stand age using the environmental filtering ap-
proach (Butler et al., 2017). As demonstrated for photo-
synthetic traits (Verheijen et al., 2013; Smith et al., 2019),
such relationships allow practical flexibility to account for
trait variations across space, thus improving the performance
of large-scale models. They may also allow improved com-
patibility with subgrid tiling schemes used by land surface
schemes. As land surface models that explicitly represent
plant hydraulics are becoming more common, our results
demonstrate the possibility of alternative, computationally
efficient approaches to parameterizing plant hydraulic behav-
ior, which will contribute to improved prediction of natural
resources and climate feedbacks.

5 Conclusions

This study derived ecosystem-scale plant hydraulic traits
across the globe using a model–data fusion approach. The
retrieved traits enable our hydraulic model to capture the dy-
namics of leaf water potential and ET, based on a comparison
to remote sensing observations. While the traits derived here
are consistent with across-PFT patterns based on in situ mea-
surements, they also exhibit large within-PFT variations (as
expected). There is some discrepancy between our derived
ψ50,x and the values derived from interpolating between for-
est inventory plots, though it is unclear if this discrepancy
is caused by errors in the model–data fusion retrievals, errors
in the upscaled inventory data due to intra-specific variability
and spatial interpolation imperfections, or both. Uncertainty
is also induced by whether or not our retrievals represent the
same effective values as a community-weighted average (see
Sect. 4.2). Nevertheless, reasonable correspondence between
the across-PFT variations in our derived traits compared to in
situ measurements add confidence to the data set introduced
here.

As an alternative to PFTs, we constructed hydraulic func-
tional types based on clustering of the derived hydraulic
traits. Using the hydraulic functional types, rather than PFTs,
to drive averaged traits by functional types improves the
accuracy of estimated ET and VOD, even as the number
of functional types is reduced relative to a PFT-based rep-
resentation. This suggests that hydraulic functional types
may form a computationally efficient yet promising approach
for representing the diversity of plant hydraulic behavior in
large-scale land surface models. We note that the exact val-
ues of the derived hydraulic traits depend on the specific data
and model representation used here and, therefore, are sub-
ject to model and data uncertainties. However, our findings
highlight opportunities and challenges for further investiga-
tion of plant hydraulics at a global scale.

Code and data availability. The maps of retrieved ensemble mean
and standard deviation of plant hydraulic traits are publicly avail-
able on Figshare https://doi.org/10.6084/m9.figshare.13350713.v2
(Liu et al., 2020). The source code of the used plant hydraulic
model and the model–data fusion algorithm is available at https:
//github.com/YanlanLiu/VOD_hydraulics (Liu et al., 2020b). All
the assimilation and forcing data sets used in this study are
publicly available from the referenced sources, except for the
microwave-based ALEXI ET, which was obtained upon request
from Thomas R. Holmes and Christopher R. Hain on 28 Jan-
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